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Abstract. A closure of the Sturm sequence algorithm is found, ,.. .

leading to a shooting method for the nth eigenvalue and eigen-

function of a Sturm-Liouville operator. The method works for -

general (separated) boundary conditions, and provides an _ ,

a-posteriori error estimate for the approximate value of the nth

eigenvalue. A related method, which involves critical lengths in .... '.'.'-

the invariant imbedding method, is shown to be incorrect for '%

general boundary conditions.
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1. Introduction. '

Two point boundary value problems are often solved by finite

difference or finite element methods. Sometimes one can find a

"closure" or "limit" of the method as the mesh size h--.O. Such

closures are often shooting methods which provide more flexibility

and adaptability than the finite difference or finite element

method. The double sweep method (see, for example, Babuska,

Prager and Vitasek [3], Babuika amd Majer [2j, Keller and Lentini
.% % -.

[10]) is an example of this, which is also related to the invar- -'

iant imbedding method (see Scott [11]).

In this paper, we shall give a closure of the Sturm sequence % %

algorithm for computing the nth eigenvalue and eigenfunction of I %

the finite difference discretization of a Sturm-Liouville problem. ,

The resulting shooting method is related to the critical (or char-

acteristic) lengths in the invariant imbedding method. However, a

simple counting of critical lengths does not produce a correct

algorithm for calculating the nth eigenvalue (for general boun- L .

dary conditions). We shall discuss this in detail in section 3.

In addition, our method gives an a-posteriori error estimate for

the approximate value of the n eigenvalue.

Standard methods by finite differences or finite elements

usually find the first n eigenvalues kk 1 1 - k n. Shooting

methods, such as those discussed in Keller [9], find one elgen-

value, but do not determine which one it is. We are aware of only

one other shooting method which finds the n eigenvalue. That

method, which uses the Prufer transformation, was given by Bailey

[5] and Godart [7], and was also discussed by Scott, Shampine and

Wing [12]. Our method has the advantage that it generalizes to UP 4

higher order problems and systems. Such generalization.s will be 7'.
discussed elsewhere.

In section 2 of this paper, we formulate the problem and

describe the shooting method (which is a closure of the Sturm

- 3 - . r
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S.

sequence algorithm). In section 3, a platisible but incorrect

algorithm is discussed. This is related to critical lengths. In

section 4, we discuss closures of numerical processes. In this

context, we outline the proof of our main theorem (Theorem 1),

which is the basis for our shooting method. In sections 5 and 6,

we recall details of the finite difference discretization and the
%0A

f

Sturm sequence algorithm. Section 7 deals with the closure of the

Sturm sequence algorithm, and the proof of Theorem 1. In section A
8, we summarize our results, and state some conclusions.
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2. A Shooting Method for Eigenvalues and Eigenfunctions.

Consider the eigenvalue problem

(2.1a) -(p(x)u')' + q(x)u X. r(x)u , for 0 x 1,

(2.1b) I0 u(O) + 30 u' (0) = 0,

u(1) + '31  u' (1) = 0,

where we suppose that:

(a) p(x), q(x), r(x) are continuous, and p(x) is piecewise

differentiable on [0,1].

(b) p(x) > 0 and r(x) > 0 on [0,1].

(c) The boundary conditions are normalized as follows: If

3 i 0 0, then "3, = 1; if 31 = 0, then a, = 1

(for i = 0,1).

It is well-known that the eigenvalues of (2.1) form an increasing

sequence:

1i < x2 < X 3 < ". < An < ...

and lim = n--+ a L- ,.

Remark 1. Without any difficulty, we could assume that p, q, r

are piecewise continuous functions, instead of continuous func-

tions. For simplicity, we have assumed they are continuous.

Remark 2. The boundary conditions in (2.1) could also be written

in the form

ao u(o) + 30 p(o)u'(o) = 0,

a1  U(1) + 1I? p(l)u' (1) = 0,

which would be more natural, for physical reasons. Obvicusly,

conditions (2.1b) and (2.1c) are equivalent. We have chosen

(2.1b) for simplicity.

We shall now describe the shooting method for finding the -

nth eigenvalue and etgenfunction of (2.1). Choose a number k.

and let uo(x) be a nontrivial solution of the initial value

- 5 - ..



problem:

J-(p(x)u')' + q(x)u = ,, r(x)u for 0 _ x < 1,

l0  u(O) + ?0 u'(0) = 0.

(Choose any initial conditions which satisfy the boundary condi-

tion a0  u(O) + 30  u'(0) = 0.) Let No  = NO(A0 ) be the number of ION %

zeros of uo(x) in the open interval (0,1). (Note that the ..

uniqueness theorem implies that all zeros have multiplicity 1.)

Let v = v(o) = 1 uo(1) + 3, ub(1), and

-0 if v U0 (I) > 0 or v = 0,
I if v u0 (i) " 0 and v 0. :

(Note that k0  is an eigenvalue if and only if v = 0.) Finally,

let N(X0 ) = No + a. Thus, N(10 ) is the number of zeros of

u0 (x) in (0,1), with a correction which depends on the boundary

condition at x = 1. The shooting method depends on the following

theorem, which will be proved in §7.

Theorem 1. N(10 ) equals the number of eigenvalues of (2.1) which
are less than kO  .i

0',.

We can now describe the shooting method:

Step 0. Find values L0 < RO, such that N(LO ) = n-I and

N(Ro) = n. This implies that LO '..n
< RO.

Step k. For given values Lk_. < RkI, with N(LkI) n-I

N(Rk I ) = n, find values Lk , Rk, such that N(Lk)

n-i , N(Rk) = n , Lk_ Lk I R Rk_1, and

Rk-Lk < Rk i-Lk-1*
STOP when Rk-Lk - T, where r is a given tolerance.

To implement the above steps, we need an initial value solver ..

to compute uo(x) and a nonlinear solver for Lk and Rk. The

approximate eigenvalue kn will be either the midpoint of the

last interval [LkRk], or the last approxiinatln found by a

N -n -
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nonlinear solver. The approximate eigenfunction n (x) will be
1-

the solution of (2.2), with 0 = An .

STEP 0 can be carried out either by using estimates of An

which the user may have, or by using a related boundary value 6 .

problem whose eigenvalues are known. For STEP k, we can use the

bisection method for the integer-valued function N(X), or we can

combine this with a nonlinear solver, such as the secant method,

for the function v(X).

Assuming that the ODE's under consideration are solved

exactly, the method gives a sharp a-posteriori error esinate for

the eigenvalue Xn . Of course, the ODE's will be solved numeri--

cally. An effective implementation of this method must relate the

accuracy of the initial value solver (governed by an input

tolerance parameter) to the value Rk-Lk, and to the accuracy of

the nonlinear solver for finding Lk, Rk. A detailed analysis is k' k'
required to determine the effects of the approximate solution of .

ODE's on this method, and on the a-posteriori error estimation.

Such an analysis, together with a program implementing the method, ,...

will be published elsewhere.

Remark 3. If we are only interested in the eigenvalue An' and

not the eigenfunction on , then we need only concern ourselves

with the count of the zeros of u(x) and the correction term (T.

This can be obtained by solving various transformed formulations

(such as that used in the invariant imbedding method).

Remark 4. The method resembles a count of the critical lengths in

the invariant imbedding method (see [11], chap. V). However, a

simple count of the critical lengths (with no correction term)

does not produce a correct algorithm, for general boundary condi-

tions. We shall return to this point in 3.

Remark 5. Theorem I leads immediately to the following corollary,

which is a classical theorem about eigenfuncticns.

7
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thCorollary. The n eigenfunction 0 n(x) of (2.1) has exactly

n-1 zeros in the interval (0,1).
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3. An Incorrect Algorithm.

We consider an alternative algorithm for calculating the nth

eigenvalue of (2.1). Let u0 (x) denote a solution of the initial

value problem (2.2), as before, and let vo(x) = Ulu 0 (x)+ 'lU6(X).

It might seem natural to count the zeros of v0 (x), rather than

counting the zeros of uo(x), with a correction using vo(l), as

in the previous section. In other words, if N' (0) denotes the

number of zeros of v0 (x) in (0,1), we might conjecture the

following:

Hypothetical Theorem. N' (10 ) equals the number of eigenvalues of

(2.1) which are less than k0. '0#J
01,

This would lead to an alternative algorithm for finding kn by

replacing N(AO) by N' (1O ) in STEP 0 and STEP k (previcus sec-

tion). However, the above Hypothetical Theorem turns out to be

false. It depends on monotonicity properties of eigenvalues, .., oh...

which are valid for Dirichlet boundary conditions. but not for

general boundary conditions. At the end of this section, we shall " .•

give an example where the alternative algorithm (using N'(k0))

fails.

Note that if vo(x0 ) = 0, then k0 is an eigenvalue on the

interval [O,x 0 J, and x0  is a critical length (as used in the

invariant imbedding method). Thus N' (X0) is the number of cri-

tical lengths (corresponding to ko ) which are less than 1. We

see that a simple count of the critical lengths does not produce a
, ,h

correct algorithm for calculating the n eigenvalue of (2.1).

We shall now indicate the role played by monotonicity

properties of eigenvalues. For 0 < y 1, let k n(y) denote

the nth eigenvalue of the same operator as before, with the same

boundary conditions, but on the interval [O,y]. In other words,

is the thkn(y) is the n eigenvalue for the problem:

9
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1-(p(x)u')' + q(x)u = A r(x)u , for 0 s x y,

(3.1) .a 0  u(O) + 0 ' (0) = 0,

I u(y) + 3 u'(y) = 0.

For a given n, we ask the following question:

(Q) Is An(y) a decreasing function on (0,1]? "-' -.

If the answer to (Q) is yes, for all n, then the Hypothetical

Theorem is true and the alternative algorithm is correct. For .

suppose that x0 (0 < x0 < 1) is a zero ofsuppose1
Vo(x) = aI uo(x) + ;31 ub(x), where uo(x) is a solution of

•. % %I
(2.2). Then X is an eigenvalue on [0,x 0 ], i.e., k 0 = k(xO)"

for some k. Since Xk(y) is a decreasing function,

kk = k(i) < 'k(xO) = AO" In this way, each zero of vo(x)

corresponds to an eigenvalue less than A0. This shows that the

Hypothetical Theorem and alternative algorithm are correct, if .

An(y) is a decreasing function, for all n. Unfortunately, this

is not true for general boundary conditions.

If the boundary condition at the right endpoint is a

Dirichlet condition: u(y) = 0, then the classical monotonicity .2

theorem tells us that An(y) is a decreasing function, for all"-

n. But Greenberg [8] has shown that if the boundary condition at

the right endpoint is not a Dirichlet condition (i.e., ?i 0 0".

then for given no  1, there exist coefficient functions p(x), .

q(x), r(x) and a subinterval [a,b] (0,11, so that the elgen-

values Xf(y), A2 (y) . \no(y) are increasing functions in

[a,b]. (On the other hand, for given p(x), q(x), r(x), a 0, 0

a1 , 1 there exists nI  1, so that for n -- n , n(y) is a

decreasing function on (0,1].) Thus, we cannot expect the

Hypothetical Theorem and alternative algorithm to be correct for

general boundary conditions. We now give a concrete example where

they fail.

- 10 -
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Example. For 0 < y s 1, consider the eigenvalue problem:

(p(X)u' )' = u, for 0 x y,

(3.2) (0) + u'(0) 0-

u (y) = 0.

The energy norm is given by

(3.3) B(vv) = -p(O)v(O)2 + f (x)v'(x)2dx,

0
and

S ~~( v, v ) ";
(3.4) X (y) inf

vEC l[0,y] V

y
where V!:2  v(x) 2dx.

-' 0

Putting v(x) - 1, we find that Ai(y) = B2v~v) . Thus
2 y

(3.5) k1 (y) < 0.

We now consider the two algorithms (given by Theorem I and the

Hypothetical Theorem) for finding the number of eigenvalues < 0

(for the interval [O,y]). We must solve the initial value

problem:

f(p(x)u), = 0

I(o) = 1 , u'(o) -2.

Denote the solution by uo(x), and let v0 (x) = u6(x). We

obtain: -p u6 = constant = p(0), so that

vo(x) = 1(x) =,,.-.

* (3.7) C---

uO(x = 1 - P dt.
0

Since ub(x) < 0 , u0 (x) is a decreasing function (with

uo(O) = 1). Fur a given y (0 < y 1), either

(A) uo(y) -0 and u6(y) < 0, or

(B) Uo(y) < 0 and u6(y) < 0.

- 11 -
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In case (A), N o = [number of zeros of uo(x) in (0,y)] 0,

a = 1, and N = N0 + a = 1.

In case (B), No = I , a = O, and N No + =1.

Thus we see that the algorithm of Theorem I counts 1 negative

elgenvalue on [O,y], for all y in the interval (0,11.

On the other hand, the alternative algorithm, based on the

Hypothetical Theorem counts the zeros of vo(x) = ub(x) in

(O,y). Since vo(x) < 0 , N' = 0, predicting no negative eigen-

values! Here we have an example where the Hypothetical Theorem

and alternative algorithm are incorrect.

Remark. Greenberg [8] has shown that in the above example, AI(y)

Is an increasing function on (0,I]. Thus we have "reverse mono-

tonicity" in this example!

2 .. %.
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4. Closure of a Numerical Process.

Standard methods for solving boundary value problems involve

two stages:

(A) A discretization method (such as finite differences or finite

elements) which approximates the continuous problem by a

finite-dimensional algebraic problem.
(B) An algorithm for solving the algebraic problem,.k

It may happen that the algebraic algorithm is equivalent to

finding a numerical solution uh of an initial value problem, and

manipulating this solution in some way to find some desired

approximate value Zh Perhaps Zh = Fh(Uh) where Fh is some

function. As the mesh size h---*+O, suppose that Fh F (some

function), uh--u (the solution of the initial value problem),

and Zh-- (the value we wish to compute). Of course we then

have z = F(u). Thus we obtain an alternate method for calculat-

ing z, which we call a closure of the numerical process. This

method consists in solving the initial value problem to find u,

and then calculating F(u) to find z.

We have in mind situations where the initial value problem is

hidden in the numerical process. Finding a closure amounts to

discovering a hidden initial value problem. If we find a closure,

then we gain a better understanding of various properties of the ....

algorithm, and we can improve it. The algebraic algorithm may

have involved a low order method, such as Euler's method. We can

choose a higher order initial value solver, or one which is

especially adapted to the particular problem.
We shall show that Theorem 1 is a closure of a numerical

process. In the next section, we review the dlscretization by

finite differences. In the following section, we discuss the

algebraic algorithm, using Sturm sequences. In this context, Zh
is the number of eigenvalues (of the finite difference equation)

which are less than k0 The Sturm sequence turns out to be

-13-
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related to the initial value problem (2.2). Fh counts the number '

of sign changes in the Sturm sequence. This turns out to be the

same as the number of sign changes in the numerical solution uh r

of (2.2), except for the last term. This last term gives rise to

the correction term J (mentioned in §2, where N(10 ) is

defined).

The general notion of closure is probably due to S.L. Sobolev

[13], [14]. In [14], Sobolev defines closure and applies it to

the elimination method for solving a discretized integral

equation. Babuska, Prager and Vitasek [3], [4] find closures of

several algorithms. The closure method seems to have many other

possibilities for application. We plan to return to some of them ,', -

in the future.

. %
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5. Discretization.

We shall discretize the boundary value problem (2.1) by

finite differences. We use uniform mesh of size h = 1/n, and

the finite difference operator:

A (ui)= (ui+- uiI).
22 .t

Approximate the differential equation by the difference equation:

-A (Pi A (ui) + qjuj = r rlu i ,

or equivalently:

--1' + -- + + h2qp 1 1  =\h 2riu".
(5.1) -p I 1 ui-I 

+ (p.i + pI+ - pq+)ui+u i 
2 2 2 2

The boundary condition a 0 u(O) + .3.u' (0) = 0 is approxi-

mated by the difference equation

U u + i11 -[ -- i 0 , or u = _...

0 0 "0 0 7,0 _l 0

Substituting this into (5.1), with i = 1, we obtain

4 f-ha
31(5.2) 0 P + P3 + h lu - P3 u2 = x h r'u1 .

The boundary condition al U(1) + 1 u' (1) = 0 is approxi-

mated by the difference equation

cn Un + I n-i
1 3 1  0 ,or Un ,31+ -a

Substituting this into (5.1), with i = n-I, we obtain
-p +F+ha I p + h"

(5.3) : Un-2 3 (Pf- + _1 u- 2n-i  n- 1 1 -

2= hrnlun.l

Thus, we have a finite-dimensional eigenvalue problem:

(5.4) Au = X Ru,

where A is the finite difference matrix

- 15 - .4

-4.-

"S .. , . ... .,,...-, ",. -. - -. % --... o".....•......-.".."......." ........... "... .........--......

> . ; - :*;..2,:." .: ,'4"i'i " "i
"°

'." " "" "'" """. "' "'-".'. .".. . .-... .".•.'..-""'.."."... .- '.. . . . ."•.".. . . . .' "... . .". .



M -X r *- .. 'IF - W. - - - . - .

Ial b1  -

bI a2 b2

b 2 a 3 b 3

bn-3 an-2 bn- 2

bn- 2 an-1  -

with a= - 0  p + h2

a i  p + p + hq (2 1- n-2), .

an-I = Pn-: 17tWl Pn-+ h qn--

b, = (1 i n n-2), *:.p

and R is the diagonal matrix

r
2

R h 2  3

:.%. -
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6. Sturm Sequences.

The finite difference discretization has approximated the

continuous eigenvalue problem by the finite-dimensional eigenvalue

problem

(6.1) Au = X Ru.

The algebraic algorithm we shall use for this is the method

of Sturm sequences. We shall briefly recall the definition and

main theorem on Sturm sequences, in the context of (6.1). Details

about Sturm sequences can be found in Bathe, Wilson [6], Stoer,

Bulirsch [15] and Wilkinson [16].

For a given number l.0, the Sturm sequence

SO ('.O), Sl('O) . .. Snl(AO) is defined by: SO(X O ) = 1, and

for 1 _ i : n-i , Si(,o) is the leading i i principal minor of

A-.0 R. In other words, Si(ko) is the determinant: ,..

2(al-koh r) bI "

b I  (a2-, oh
2 r2 ) b 2

= .,

bi_2 (ai_-,oh
2 ri1 ) bi_ 1

b -A (ai-' h 2r)

A . .0 A. .'r

The following theorem is the main fact that we shall need.

Sturm Sequence Theorem. Let c(ko) be the number of sign changes

in the sequence S $ 1 (k 0 ) .... Sn_ 1  Then c([0)0('kO~ S1(k )1 .. I.S-...O)
equals the number of eigenvalues (of the problem (6.1)) whli,-h axe

d less than _0"

Note: If Si(Ao) = 0, then it counts as a sign change, in the

above theorem.

4.17
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7. Closure of the Sturm-Sequence Algorithm. Proof of Theorem 1

For a given number A0 1 consider the initial value problem

(.)(x)u')' + q(x)u =~ r(x)u ,for 0 x 1,
{u(O) = 30 ,u' (0) = -aO

Note that the initial conditions were chosen to satisfy the

boundary condition a0 u(0) + 3 u'(0) = 0. Thus, equation (7.1)

is essentially the same as (2.2). .~4

Consider a finite difference approximation to (7.1). We

obtain the same difference equations (5.1), including the first

equation (5.2), but with No replacing V. We do not obtain the

last equation (5.3), because u is not required to satisfy the V.

boundary condition at x = 1. Thus, the finite differencep

approximation ui satisfies:

(7.2) (a -X h A
1 

+ b~u U 0,

and

* (7.3) bi..u.. (a1-X0 h
2 ri)ui + biui+i 0 ,for 2 i n-2. '

It also satisfies a last equation ...

-P 3 Un-2 + (P3 + p1 + hqn 1 )Un-1  un
n-- n- n-7 n-7~

which can be written

(7.4) bn2Un-2 + fan + %1 1  p - 0 h2rn-1lUn- + bn Uni 0 .

We shall relate the Sturm sequence S(')S(A,. Sn(O

to tesoton u,, 2 .'Un of the above finite difference

equations. We first consider the case where all Si1A0 ) are_--

nonzero. We shall use the notation

(7.5) Ai= a1 -k i
A1  \~ r1

For 1 1 n-2, consider the first I equations:



A u1 + b 1 u 2  -0

bul + A 2u 2 + b2u 3  = 0

bi2ui 2 + Ai-lui_1  + b 1l11 i = 0

bi-lui-1 + Aiui = -biui+-

By Cramer's rule:

-biUi+i S
Ui  - S i(A O) , or

U 4 541 (? 0ui Ui+l o1 - .. 4.€
(7.6) t 0 T = -b i 3 -0, , for 11 - n2.

U - 1  0 iu i t i t i -. A ,
Let t i  Si -l10 Then tl 1  = P +--=

2 .. .' .

ti
(7.7) t1~1  - + 1 1 -n-2.

i+I

This implies that
(7.8) t = P -yP -3  " 'i P3 - ' i n-i .1 41

Thus, all the ratios ti = $1_l O (I < i n-1) have the same

sign. This implies that the sequences
S0 (kON), SI( 0 ), ... Sn-2(k0) and uU, u2 .... u 1  have the

same number of sign changes.

We must still determine what happens with regard to a

possible sign change from n-2(') to Sni(1O). To find this,

we shall consider all (n-i) equations for the ui . The last of

these equations is (7.4), which can be written

(7.9) bn-2Un-2 An-lUn-1U + I P lu
br ~ ~ ~ n-i2 nn- ni-TiZn-1

L e t . " .

(7.10) Vn = bn-Un + 1T PnUn-I

19 -
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Then (7.9) can be written :..

(7.11) bnUn_ + An~~_ n

Now consider the (n-1) equations for ui: i

AlU 1 + b 1U2  =0 y;

blU 1 + A~u + b~u 0

bn -3 Un- 3 + An -2 Un- 2 + b n-2 Un- 1 0 >e.

bn_2Un_ 2 + An-fUn_ 1  v n

b **'.* .*

By Cramer' s rule : .,'

.. '. '

VnSn 2 (-0)abewit

Un_ 1 =Sn~(0 , or .

( 7 12 ) n-1 Vn-- "_

(7.11) b 2 n A~U~

• Sn-2("OT = n-l(7O7 ee

Thus, the two sequences S olAo), Sl('O) ..... I Sn-l(kO) and ..

1 2 .... IUn-1, vn  have the same number of sign changes. % %J
We now consider the case where some of the Si( O ) are zero. .-

' .%

4We first note that there is a recursion relation el

(7.13 Su( 2 bO) = (ai-0oh2rilSi_l(A0) - b _S.

which is obtained by calculating the determinant Si( ,O ) by "'-

1.cofactors of the last column. This implies that two consecutive e,
terms Si_l(kO), Si(+O) cannot both be zero. For if

Si_1(,%O ) =Si(,1O ) = 0, then the recursion relation implies that..-..f,

S_2 O ) =O (Note that bi_ 1  -p. 0.) Similarly, it would"-." ;%

(7.1) n-i ______

follow that Si_2(,O) = Si_3(1O) = .. = I, O )  = SO(AO) = 0. But_ 7-
SoTuO ) = . Therefore, two consecutive terms in the Sturn

sequence cannot both be zero. s
Similarly two consecutive terms in the sequence) a zr

e Ufi n tcannot both be zero. For if u i  U i+1

20
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then (7.3) shows that u 1 = 0. Similarly, this would imply

that u= u - .. = u+l = 0. The initial conditions PIN
• 4- .'o% -

u(O) = 30u' (0) = -a0 in (7.1) are implemented in the approxi- ,
u1-U0  ..

mate solution by: uo = _a Since u1 = 0, this

implies that u0 = ha0  and Uo = 3o, so that so = ha0 . This

relation can be satisfied by at most one value of h, since r0O

and .0 are not both zero. We assume that h is small enough so

that 0 ha0. The assumption ui = ui+1  = 0 now leads to a

contradiction..

We have shown that two consecutive termc Ci(kO), Si+(kO)

cannot both be zero, nor can two consecutive terms ui, ui+1.

This fact, together with equation (7.6), written as

(7.14) uiSi(\O) =-biui+iSi-l( O)"

shows that Si(XO) = 0 if and only if ui+1  
= 0. Now suppose

that Si0 (ko) = Si (kO) = " Si(XO) = 0, and no oti.er Si(kO)

is zero. The argument given above, for the case where all Si(ko )

are nonzero, shows that the sequences
% -. ..

ik+l Sik+ 2 ( 0 ) . Sik-i \ )' and ..

U ,Ui+ 2 , .. , Ui have the same number of sign changes.ikl k+2' '' uk+l *

The same holds for the beginning and end segments of the Sturm .,..

sequence, corresponding to 0 i -1 and + i n-l.

Thus, if we count a zero as a sign change, then the two sequences

S01\O), Si( O ) , ..... Sn l(AO) and u, u2  .. UI , v n  have

the same number of sign changes. The Sturm Sequence Theorem now N
implies that the number of sign changes in the sequence

U, u 2 ' ..... Un I , vn  equals the number of elgenvalues of the

approximate problem Au = Ru, which are less than A0 .

We now consider what happens as the mesh size h--0. Let

Uo(x) be the solution of (7.1), and v = o1 u0 (l) + '<i u6(1). We

shall consider four cases, according to the possibilities that

-21-
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Uo(1) and v are zero or not.

Case 1. uo(1) 0 0 , v 0.

The continuous problem has only finitely many (say m) ",

eigenvalues less than XO° It is known that the first m eigen-

values of the approximate problem converge to the first m elgen-

values of the continuous problem as the mesh size h---40. The

%number of sign changes in the sequence u-, U1 ..... Un_ -converges to the number of zeros in (0,) of the solution u 0 (x)

of the initial value problem (2.2) and (7.1).

We must find what happens to vn as h---O. Recall that

v1 = n + 1+i pIUn1J and bnI = pn. A simple

calculation shows that

n-7 1j un 1 4-<(7.15) vh i a[u + 13
vn = 2alu

Recall that the boundary conditions are normalized: either

3, = 0 and =1, or 3 =1. Thus

pnU if = 0

pt un n - ''
v'=- "4

Thi sowsc 1 u1 + nn1i if =~ ' "4.

This shows that for small h , vn  has the same sign as

v = u0 (1) + 3, u6(1), where uo(x) is the solution of (7.1).

Thus, for small h, the comparison of signs between un_1  arid

vn  is the same as that between Uo(1) and v. This shows that

the correction term a should be 1 if there is a sign change

between u(1) and v, and otherwise :J should be 0. This

concludes the proof of the theorem, in Case i.

Case 2. uO (1) = 0 , v O.

In this case, (t = 1 by definition, I and

-22



, U (1) + u'(l). If Uo(x) has positive values ill som.e

small interval (i-i ,l), then uV(l) < 0, and

v = * I Uo(1) + U(1) = u'(1) < 0. If uo(x) has negative values

in (1-c,1) then u6(1) > 0 and v > 0. Thus there is always a

change of sign between Uo(X ) , for x close C 1, and v.

Now consider the sequence c ' .... Un1 , v. For small

h, the number of sign changes in this sequence equals the number

of eigenvalues (of both the approximate and ;ontinuous problems)

which are less than A. |.

(7.16) #(eigenvalues < A0) = #(sign changes in u1Du 2 ,.. P,Un vn ).

Since u'(1) * 0 , u6(x) d 0 for x near 1. Choose x,
near 1, so that uo(x0 ) x 0 and %(;) 0 for m0  x i.

0*
Then uo(x) is monotone on [x0 ,I], and it has only one zero in

this interval, namely at x = 1. We may suppose that x0 - ioh.

- Then, for small h,

#(sign changes in uI , u2  u =

(7.17) #(zeros of uo(x) in (O,xo]) =

#(zeros of uo(x) in (0,1).

Also, from (7.16), we have

#(eigenvalues < AO)
. ): ""-"

(7.18) #(sign changes in ul, u 2, . •) +

#(sign changes in uio ..... UnI , vn).

We claim that

#(sign changes in u i  ... Un-', n ) =1. .--

If we can show this, then (7.17) and (7.18) imply that Theorem I

is correct in this case.

'- Since u6(x) * 0 on [x0 ,I], the sequence

l Uio+1, ... I Un..I is monotone. Thus it can have at most one

sign change. If there is a s g;, change, then either "I 0

- 23 -
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(which counts as a sign change) or uni has the opposite sign to

that of uo(x), for x0 - x < 1. In this case, there is no sign

change between Un-1 and vn  (since we have seen above that

there is always a sign change between u(x), for x near 1,

and v). Thus #(sign changes in u u.......n. vn ) = ., in

this case.

If there is no sign change in the sequence

u0 U then u and v- have opposite signs.

Again we have #(sign changes in uio, Un_ 1 vn ) = 1. We

have shown that

#(eigenvalues < kO) = #(zeros of uo(x) in (0,1)) + 1.

This proves the theorem in Case 2. .

Case 3. uO(1) I 0 , v 0.

In this case, av = 0 by definition. Also 0  s an

eigenvalue of the continuous problem, say k0 k" Thus, there

are k-i elgenvalues (of the continuous problem) less than k . ,

We must show that the eigenfunction Ok(X) = u0 (x) has exactly

k-i zeros in (0,1). Of course, this is a classical theorem. ....

But we want to show that it follows from Stuim sequences. p

Let uo(x,A) denote the solution of (7.1), with repiac-

ing 0' and let u(fl), u 2 (k). ..... u. vn ( ) he the
corresponding sequence obtained from the finite difference-

solution. Let c(A) denote the number of sign changes in this

sequence. Choose A, V' close to k= Ak such that

k < k0 < A'. By Case 1, c(X) = k-i and c(k') = k. Since

uo(1,A 0 ) * 0, the number of zeros in (0,I) is the same fnr

u0 (x,k), u0 (xA 0 ), uo(X,A'). Also, this number of zeros equals

the number of sign changes in the sequences

u'( ), U2 (A), .... Un l() and u1 l(A' ), u2"k , ... . n (A'

Since c(X') = c(.k) + 1, the extra sign change must come from a

change in sign of vn  This shows that u0 (M:\ has k- I z.eros

- 24 -
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in (0,I), which proves the theorem in Case 3.

Case 4. u0 (i) = 0, V =0. *

Again A is an eigenvalue, say A0  k In this case, we

K have a Dirichlet boundary uaditiol: cu u(1) + :3 u'(1) = uMi

v = u0 (1), and (7 = 0 by definition. We must show that

uo(x,lo) has k-1 zeros in (0,1).

4As in the previous case, choose A, A' close to k with

X< 'k0 < x' Then v(X) = u0 (1,Nk) * 0 and v(Nk') =u 0 (1.k') -0.

By Case 1, u0 (x,k) has k-i zeros in (0,1) and uo(x,k') has

k zeros in (0,1). The extra zero must arise from u0 (x,k0 ), at

X = 1. Therefore u0 (x,xo) has k-i zeros in (0,1). This

concludes the proof of the theorem.

.25



8. conclusions.. %

A closure exists for any numerical process dealing with a

matrix problem which comes from discretizing an ordinary differen-

tial equation. We have shown that the closure of the Sturm

sequence algorithm for finding eigenvalues leads to a certain

shooting method. Other numerical processes, such as vector iter-

ation methods, transformation methods and polynomial iteration

techniques also have closures. We have mentioned some closures

(such as the double sweep method) of algorithms for solving *
systems of linear equations. A closure of an algorithm is impor-

tant, because it leads to a new method for solving the continuous -.:.

problem. The new method is often superior to the finite differ-

ence or finite element method, because it has greater flexibility. .

'.. .-
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